
Unlocking Apple///

Hacker's Haven

W
elcome back! This issue's discus·
sion of the ever-less mysterious

Apple 111 will deal with Everything You
Ever Wanted to Know about Writing
Assembly Language (But Couldn't
Find Anybody to Ask). This time, I'll
discuss the two different ways of crea·
ting Assembly language programs for
the 111, and in addition, we'll get into
head-spinning detail on how to use a
few important SOS calls, integral know·
ledge for most any Assembly language
application. Also, we'll create a real,
working, good·for·fun interpreter!

To Boot

As you know if you've read your
Apple 111 manuals (and who hasn't?),
in order for a SOS diskette to boot, it has
to have three files: SOS.KERNEL,
SOS.INTERP, and SOS.DRIVER
SOS.DRIVER files are created by the
System Configuration Program, which
is documented in the Standard Device
Drivers Manual. SOS.KERNEL is the
operating system itself, supplied by
Apple Computer, and not modified un·
less you want to disassemble it yourself
(have fun and send me the source code,
please). The SOS.INTERP file contains
a machine language" control" program;
that is, when the diskette is booted, the
program in SOS.INTERP is executed
after all the operating system stuff is
installed. Some examples of
SOS.INTERP files are Business BASIC,
Pascal, Apple Writer I I I, and VisiCalc
I I/. Note, however, that no matter what
the true nature of this file (i.e. BASIC,
VisiCalc, etc.), it must be called
SOS.INTERP. Let's summarize the
SOS booting process:

44 Apple Orchard

Alan Anderson

1. Powering on the Apple I I I or pres·
sing CtrHRESET) causes a jump to the
computer's only ROM: a small self·
diagnostic program and diskette boot
routine.
2. The diskette boot routine from the
ROM then reads in a small chunk of
code from the diskette in the built-in
disk drive. Along the way, the ROM
manages to be mapped out of memory,
giving the Apple nothing but wide open
RAM.
3. The code read from the diskette then
reads in the directory of that diskette. It
looks for our friend SOS.KERNEL and
reads it in if found or issues an error
message if not found.
4. SOS.KERNEL then proceeds to read
in and relocate SOS.INTERP and
SOS.DRIVER After doing so, it finishes
up the boot process by executing
SOS.INTERP.

So, from this little scenario, it is
obvious that one way to implement

Assembly language programs on the
Apple I I I is by making them
SOS.INTERP files. How practical is this?
Well, in the case of large, independent
applications like languages, VisiCalc,
and Apple Writer, this is the ideal
method. You share control of the
machine only with the operating system
and you don't have to worry about any
non-essential code hanging around. On
the other hand, if you want your Assem·
bly language programs to coexist with
BASIC or Pascal, remember that there
can only be one SOS.INTERP per disk·
ette. That means that making your
program an INTERP file is not the way to
go if you want a high-level language
around.

- Part 3

The Module Squad

Is all hope lost? Of course not! As
regular readers of this series know,
there is a second method for imple·
menting Assembly language software
on the Apple I I/. This method, in which
the programs are called modules, is
used to link the Assembly language
code with Pascal or BASIC programs.
The Assembly language thingie called
Restart which we've been playing around
with in the last two installments is an

example of a module. A module is
simply an Assembly language program
which is loaded, relocated, and gen·
erally baby-sat by Pascal or BASIC

There are a few rules to writing mod·
ules, and just about all of them are
covered in the Apple/// Pascal Program
Preparation Tools Manual (I keep telling
you to read those!). The rules are pretty
much the same as those which govern

· the use of Assembly language routines
in Apple II Pascal. In fact, many parts of
SOS appear to be descended from the

Apple II Pascal Operating System, so a
knowledge of that system doesn't hurt
when you're working with the I I/.

On the other hand, making a
SOS.INTERP has thus far been doc·
umented only in the information re·
ceived inApple's OEMclass for thel 11-
Basically, the syntactical rules for writ
ing interpreters are quite simple, and I'll
give them to you right here.

An interpreter (which becomes a
SOS.INTERP file) is an Assembly lang·
uage codefile with a few identifying
items attached to the front Specifically,
these items are:

1. The eight ASCII characters "SOS
NTRP", which is SOS INTERP with the

vowels removed. (Note the blank be·
tween the second 'S' and the 'N'.)

2. Two bytes giving the length of an
optional header information block This
block can be used for a copyright
notice. The optional header block (if
used) follows these two bytes.

3. Two bytes giving the loading address
of the interpreter. An interpreter is not
relocatable. SOS will automatically load
the interpreter at the address given
here. Since the interpreter is not relo·
eatable, the source text must contain
the .ABSOLUTE command.

4. Two bytes giving the length of the
code part (everything but this header
stuff). The interpreter should be con·
structed so that it does not use any
memory beyond $B7FF.

Could You Interpret That For Me?

If you've read the previous install·
ments of this column, you've already
experienced the wondrous thrill of crea·
ting and using a module in Pascal.and
BASIC. Well, in this very magazine,
we're going to make an interpreter. But
not yet! (Awwwww.) First, we're going to
delve into a few essential housekeeping
calls to the operating system: SOS calls.
For all my noise about SOS calls in this
series, I've only documented two, and
boy, have I heard it from you folks! So,
let's move on into some real SOSsy
stuff.

Omniam SOSam in quartes partes
divisus est

There are four distinct groups of SOS
calls. They are the File System calls, the
Device System calls, the Memory Sys·
tern calls, and the Utility System calls.
The file calls are probably the most
commonly used. They're the ones that
let you create, open, close, read from,
write to, delete, rename, and otherwise
manage files on devices in the system.

The device calls are related to the file
calls since files are physically imple
mented on devices. Device calls let you
modify the way the device does some
thing, inquire about the status of de·
vices, and do some other things.

The memory system calls allow SOS
to reserve sections of memory for a
program's use, and they also allow the
programmer to get information about
the current use of memory in the Apple.

The utility calls manage some mis·
cellaneous resources in the Apple / / /,
such as the joysticks and the system
date and time.

I'd like to introduce a standard format
for SOS call information. To recap

briefly, a SOS call is performed with an
Assembly language BRK, followed by a
byte indicating the call number, fol
lowed by a self-relative pointer to a
parameter list It looks like Listing 1.

This chunk of code, called the Call
Block, is placed in your program just
like any other instructions. When SOS
sees the BRK it finds the parameter list
and attempts to execute the call. An
error code is returned in the accum
ulator. If no error has occurred, the
accumulator contains a zero. For a list
of possible errors which the calls in this
article can produce, see Table 1.

The information which is essential to
making SOS calls is the call number
and a description of its parameters.
Parameters come in four flavors: value,
result, value/result, and pointer:
Value: Data passed to SOS from the
calling program's parameter list This
data is not modified by SOS. Values are
1, 2, or 4 bytes, as specified.
Result Data passed to the calling pro
gram's parameter list from SOS. SOS
puts this data in a specified location in
the parameter list Results are 1, 2, or 4
bytes, as specified.
Value/result: Data passed to SOS from
the calling program's parameter list
SOS receives this data and passes back
a modified value in the same location.
This is basically a value parameter and a
result parameter which share the same
location in the parameter list
Pointer: a 2-byte address pointing to an
area into which SOS places data (for
example, in a read from a file), or from
which SOS takes data (for example,
when writing to a file).

The first parameter in a SOS call' s
parameter list is always (always, always)
a value which gives the number of
parameters in the list For example, if a
SOS call has 3 parameters (as does our
first example below), the parameter list
will begin with a byte containing a 3. In
practice, it looks like Listing 2.

Table 1

Possible errors

(returned in the accumulator):

01 Bad system call number
02 Bad caller zero page
03 Bad pointer extend byte
04 Bad system call parameter count
05 System call pointer out of bounds
27 I/0 error

2A Checksum error

2B Volume is write protected

40 Invalid pathname syntax
41 Too many open character files

42 Too many open block files, or
too many block devices

43 Invalid reference number
44 Path not found

45 Volume not found

46 Fi 1 e not found
47 Duplicate file name
48 Not enough room on volume (disk full)
49 Directory full

4A Incompatible file format
4B File storage type is neither 1 nor D

4C End of ti le has occurred
4D Position out of range

4E Access not allowed

4F Buffer too small
50 File already open, access denied

51 Directory structure has been damaged
52 Not a SOS volume

53 Invalid value in list parameter
54 Out of memory

55 Buffer table full
56 Invalid system buffer parameter
57 Duplicate volume error

58 Not a block device

59 Bad file level
5A Invalid bit map address

BRK ;Software interrupt tri99ers SOS call

.BYTE Callnum !Each call has an i.d. number

.WORD Params ;Each call has a Parameter list

Listing 1

PARAMS .BYTE 03
<first Para111>

<second Par·am.l

<third par·am>

!Three Parameters to come

Listing 2

September - October 1982 45

When describing a SOS call, I will
give the call' s number (always one
hexadecimal byte) and a description of
its parameters. This description will give
the order of the parameters, the name
and type of each one, description of its
use, and any other relevant information.
I will also give an example of each SOS
call. This reserves my place in docu·
mentors' heaven. However, please note
that my examples will not contain any
error checking, so beware.

Other notes of interest some SOS
calls have parameters that are optional;
that is, the call can be made with or
without these parameters. In these
cases the call will have two special
required parameters: a pointer to the
optional parameter list, and a value
which tells the number of optional para·
meters used. You can tell SOS you have
_zero optional parameters, in which case
the pointer to the list is ignored. If this
sounds a bit confusing now, it will
probably become clear when you see it
used in a SOS call.

Often a SOS call parameter will be a
pathname, device name, or volume
name. Whenever this occurs, a stan·
dard mechanism for the name is used.
The parameter list will have a pointer to
the name, and the name itself will
consist of a byte giving the length of the
name, followed by an ASCII representa·
tion of the name itself. In source code, it
looks like Listing 3.

Those are the fundamentals, so let's
get right into it!

File These Away for Reference

The first group of calls I'll present
come from the file system. Some file
calls work on closed files and some
work on open files; none work on both.
The trick to making a closed file into an
open file is the OPEN call; the way to
make an open file closed is with the (I
can hear your mind racing) CLOSE call.
We'll deal with some calls for closed
files first

CREATE

This call creates a new file on a block
device, le., a disk drive. Actually, it
doesn't actually work with a closed file
- it makes a new one.

call number: $CO

parameters: 3

1. Pathname pointer (2 bytes). The
pathname of the file to be created.

2. Optionlist pointer (2 bytes). Points to
the optional parameter list, if the
Length (see next parameter) is
between 1 and 8; otherwise, ignored.

46 Apple Orchard

3. Length value (1 byte). Length of the
optional parameter list Range is 0
through 8. Meaning:
0 No optional parameters used
1 or 2 File type parameter used
3 File type and Aux type parameters
used
4 . . 7 File type, Aux type, and Stor
type parameters used
8 File type, Aux type, Stor type, and
Eof parameters used

Optional parameters:

File type value (1 byte)
This byte tells the file's type. Range is
0 through FF.
Meaning: (the last column shows
how the file is reported by the System
Utilities filer)

00 typeless or unknown file (Un·
known)
01 ti le containing bad blocks
(Bad ti le)
02 Pascal or Assembly code file
(Codefile)

03 Pascal text file (Textf ile)
04 BASIC text or Pascal ASCII file

(ASCII ti le)
05 Pascal data file (Datafile)

06 General binary file (Datafile)
07 Font file (character set)

(Fontfile)

08 Screen image tile (Fotof ile)

09 BASIC program file (Basicprog)

OA BASIC data file (Basicdata)
OB Reserved (WPfile) ???
OC SOS system file (SOSfile)
OD Reserved (Datafile)

OE Reserved (Datafile)
OF Directory file (Directory)
1 0 · FF: Reserved (Datafile)

.WORD PATHNAME

The file type defaults to 00 (un·
known) if this optional parameter is
not used.

Aux type value (2 bytes)
An auxiliary type identifier for the file.
Used to store further information
about the file. For example, BASIC
uses this byte to store the record size
of data files. Range is 0 through
FFFF. The default is 0.

Stor type value (1 byte)
Indicates whether the file is a sub·
directory (Stortype = D) or not (Stor
type = 1). These are the only legal
values. The default is 1.

Eof value (4 bytes)
Gives an amount of space in blocks
to preallocate for a file. Files can
grow and shrink dynamically, but if a
file is known to be very large at
creation type, using this parameter
can help make access to it faster
since the file will be contiguous. The
range is 0 through FFFFFF. The
default is 0.

An Example: (Listing 4)

Create a file named ASPHALT on the
volume called MORK. The file will be
used to contain a font

;Pointer to the name

PATHNAME .BYTE 09 !Length of the name itself

• s095ASC J l s100 "/JOE/FRED" ;Pathname is /JOE/FRED

BRK ;sos call

. BYTE OCO ; CREATE

Listing 3

.WORD CR-PARAMS !Pointer to Parameters

CR_PARAMS .BYTE 03 ;3 Parameters

CR_OPTNS

.WORD CR_PATH

.WORD CR_OPTNS

.BYTE 01

!Pointer to file Pathname

!Pointer to oPtional Params

;use File_tvpe optional Param

.BYTE OD !length of name

.s095ASClls100 "/MORK/ASPHALT" !Pathname

.BYTE 07 ;font file

Listing 4

DESTROY

As long as we're creating 'em, we
might as well destroy some, too. This
call deletes a file from a block device.

call number: $Cl ·

parameters: 1

1. Pathname pointer (2 bytes)
The pathname of the file to be des·
troyed.

An Example (Listing 5).

Delete a file called LENDER in a
subdirectory called HAPPY.TIMES on a
volume named THURSDAY.

OPEN

Before we can read from or write to a
file, we have to open it This is call that
performs that function.

call number: $C8

parameters: 4

1. Pathname pointer (2 bytes)
The pathname of the file to be
opened.

2. Refnum result (1 byte)
When a file is opened, SOS assigns it
a reference number (refnum). This
number is then used in subsequent
reads and writes with that file.

3. Optionlist pointer (2 bytes)
Points to the optional parameters
list, if the Length (see next para·
meter) is between 1 and 3; other·
wise, ignored.

4. Length Value (1 byte)
Length of optional parameter list
Meaning:

0 No optional parameters used
1 . . 3 Req access parameter used

Optional Parameters:

Req access value (1 byte)
Allows the file to be opened only for
reading or only for writing. Range is
0 through 3.

Meaning:

00 open for as much access as

permitted

01 open for reading only
02 open for writing only

03 open for reading and writing

The access defaults to 0 (open for as much

access as permitted) if this optional
parameter is not used.

An Example (Listing 6).

Open the file we created earlier
(/MORK/ASPHALT).

After this file is opened, we would use
the result returned at location OPEN·
REF to refer to this file in read and write
calls (read on!).

48 Apple Orchard

WRITE An Example (Listing 7).

This is the call you use to transfer
information from a buffer to a file.

Write 10 bytes to the file we opened
earlier (/MORK/ASPHALT).

Executing this call after using the
preceding OPEN to open the file and get
the Refnum would cause the 10 bytes
listed above to be written to the file.
Remember that when we created this
file, we gave it a 'Type' parameter indica·
ting that it was to contain a font
However, when dealing with files at the
SOS call level, SOS doesn't really care
what a file contains or is supposed to
contain - it simply reads and writes
data.

call number: $CB

parameters: 3

1. Refnum value (1 byte)
The Refnum assigned to the file
when it was opened.

2. Buf pointer (2 bytes)
Points to a buffer area where the
information to be sent comes from.

3. Bytes value (2 bytes)
The number of bytes to be written.

BRK ;SOS call < but you lme-w that already)
.BYTE OC1 ;DESTROY·'s i.d . number
.WORD DES_PARAMS ;po inter to Parameters

DES_PARAMS • BYTE 01

• l�ORD DES_ PATH

; 1 Parameter·
lPointer to file Pa thname

DES_PATH .BYTE 1C ; l ength of name
.s095ASCIIs100 "/THURSDAY/HAPPY.TIMES/LENDER" ;pathname

Listing 5

BRK ;Guess what <have vou b£en reading alons?l
.BYTE OC8 ; J.D . number for OPEN

.WORD OPEN_PARAMS !Pointer to Parameteters

OPEN-PARAMS .BYTE 04
.WORD OPEN-PATH

OPEN_REF .BLOCK 1
.WORD 0000

• BYTE 00

;4 Parameters
;pointer to file's name
;reserve 1 block for Refnum result

;we're not using any optional Params • • •
; • . • so we make these all zeroes

OPEN_PATH .BYTE ;lensth of name
.s095ASCIIs100 "/MORK/ASPHALT" ;the Pathname itself

Listing 6

LDA OPEN-REF ;move the Refnum we obtained earlier
STA WRITE-REF ;into WRITE's Parameter list
BRK ;call UP SOS (hello, SOS?>
.BYTE OCB ;call i .d . number
.WORD WRIT-PARAMS ;pointer to Parameters

WR IT _PARAMS
WRILREF

.BYTE 03
.BLOCK 1

;3 Parameters
;the above STA puts the Proper Refnum

in this bvte ;value
.WORD DATA-BUF ;pointer to our data buffer

;write 10 decimal <OA hex) bvtes .WORD OOOA

DATA_BUF .BYTE 01,23,45107,89, AB, CD, EF, FF, FF ;10 randomly
chosen data

Listing 7

READ

This call attempts to transfer a given
number of bytes from a file to a speci·
fied buffer. The other half of the world·
famous read/write team!

call number: $CA

parameters: 4

1. Refnum value (1 byte)
The Refnum assigned to the file
when it was opened (as in the WRITE
call).

2. Buf pointer (2 bytes)
Points to a buffer area where the
information will be placed after it is
read (again, note the symmetiy with
the WRITE call).

3. Bytes value (2 bytes)
The number of bytes to be read.

4. Bytes-read result (2 bytes)
SOS returns the number of bytes
actually read in these locations.

An Example (Listing 8):

Attempt to read 10 bytes from the file
we opened earlier, named
(/MORK/ASPHALT).

Where's DATA·BOF? Remember, we
defined it in the WRITE call. Can this
buffer area be reused? Sure! In fact,
that's one of the benefits of SOS' s
system of parameter lists and pointers.
You can use the same area in memoiy
as a read and write buffer.

If you executed this call after just
having written to the file earlier (as we
have done in this article), you would get
an error# 4C, End of file. Wait a minute,
you may say- we just wrote 10 bytes of
data, so why won't they be read? The
answer lies in the fact that whenever
SOS reads from or writes to a file, it
maintains a pointer, or mark, into that
file, kind of like a book marker, so that it
knows where to read from or write to
next After we wrote the 10 bytes out
(with our example WRITE call), that
marker was pointing to the end of file.
When the subsequent READ came up,
there was nothing left to read.

What do you do if you want to move
the mark without reading or writing
anything? Why, there just happen to be
a couple of SOS calls (GET-MARK and
SET-MARK) that let you look at and
modify the mark I won't go into them in
depth here, but be advised of their
existence.

CLOSE

This is the call to use to finish up the
use of an open file.

50 Apple Orchard

call number: $CC

parameters: 1 (this is a simple one)

1. Refnum value (1 byte)
The Refnum assigned to the file
when it was opened.

An Example (Listing 9).

Close the file we've been working
with.

You now have the basic tools neces·
saiy to work with SOS' s file system.
CREATE makes the files, OPEN gets
them ready for reading and writing,
READ and WRITE perform the actual
transfer of data to and from the files,
CLOSE finishes the reading and writing
process, and DESTROY gets rid of the
files.

I Promised You an Interpreter

Yes, I did, way back at the beginning
of this article, say that we'd create a real,

working interpreter before we were done,
and we're about to do just that Just as
our first SOS call and module examples
were simple, we'll begin with a fairly
mindless interpreter. This one will simply
print a welcoming message on the
screen and then sit there. Not terribly
exciting, I admit, but we need a place to
start! (We'll get fancy later).

As noted earlier, SOS.INTERP files
start with a special header block, then
get right into the code. Well, our code
will consist of three things:

1. OPENing the .CONSOLE device (so
that we can print on the screen).

2. WRITing the message to the
.CONSOLE.

3. Looping infinitely.

Since the how-to of all this stuff has
been explained, let's proceed with the
source text listing, Listing 10.

LDA OPEN-REF ;move the Refnum we obtained earlier
STA READ-REF ;into READ's Parameter list
BRK ;now call SOS
.BYTE OCA ;call i.d. number
• WORD READ_PARAMS ; Pointer to Par·ameters

READ-PARAMS .BYTE 04
READ-REF .BLOCK 1

;4 Parameters
;our STA instruction above loads this

;bvte with the Proper Refnum value
.WORD DATA_BUF ;pointer to the buffer where data read

;wi 11 go
.WORD OOOA ;OA hex is 10 decimal ; read 10 bvtes

BYTES-READ .BLOCK 2 ;reserve two bvtes for SOS to Put the
;number of bvtes actuallv read

Listing 8

LDA OPEN-REF ;as we did with READ and WRITE,

STA CLOSE_REF lbrin9 in the desired Refnum
BRK ;then do the SOS call itself
.BYTE OCC ;CLOSE call i.d. number
. WORD C:LOSE_PARAMS ; Par·ameter 1 i st

CLCi::>E . BYTE 01 ;one Parameter onlY
CLOSE_REF . BLOCK 1 ;reserve a space for the Refnum

Listing 9

;first. some administrative stuff

START

.ABSOLUTE
.PROC MYINTERP

.EGIU OBOOO
.ORG START-OE

;requ ired header follows

;required for interpreters
ithis is the title <clever, huh?>

; code wi 11 load here
;move back 14 bvtes for header

HEADER .ASCII "SOS
.WORD 0000
.WORD START
.WORD CODELENO

NTRP" ;�equired header information
lno optional header block <len9th O>

;Joadin9 address
; I en9th of code

;this is the workin9 program

BRK ;the code itself: OPEN call
.BYTE oce

• WORD OP -LI ST

LDA OP_REF !Put file's Refnum in WRITE's
STA WR_REF !parameter list

BRK ; WRITE ca 11
.BYTE OCB

• WORD WR_Ll ST

LOOP �IMP .LOOP !run around in circles forever

;parameter lists come next

OP-LIST .BYTE 04
.WORD CONS_PATH

OP-REF .BLOCK 1

!OPEN has four Parameters
!Pointer to the Pathname to open

!reserve a Place for SOS to Put Refnum
;no optional Parameters needed • • • .WORD 0000

.BYTE 00 ; • • • so these are zeroes

CONS_PATH .BYTE 08
.ASCII ".CONSOLE"

WR-LIST .BYTE 03
WR_REF • BLOCI< 1

.WORD WR-BUF

.WORD OOlF

;the 9reetin9 messa9e

;Jen9th of Pathname
;the file to open

;three Parameters for WRITE
;save space for Refnum

;pointer to our data
;Jen9th of our messa9�

.ASCII "Hi, I'm Irvin9 the interPreter!"

;close UP shop

CODELENG .EQU *-START ;figures length of code for header

.END ;all done

Listing 10

BY Alan Anderson ; from APPie Orchard J

var
i�file, outfile : file;
inname, outname : strin9 ;
data : Packed arrav [1 • • 512J of o . . 255 ;
block_num. count : inte9er;

be gi r1

write <'Enter· the p·athname of the codef i le to be converted
-->"');

readln (inname) ;
write ('Enter the Pathname for the output f ile -->'> ;
readln (outnamel;
reset (inf ile. innameJ ;
rewr i te < cout f ile, ou t name> ;
coun t : = blo ckread (inf ile, data, 1);

wh ile no t eof (inf ilel do
beg in

coun t : = blo ckread (inf ile, data, 1) ;

coun t := blockwr i te <ou tf ile, da ta. coun t) ;
end ;

close (inf ilel ;
close (ou tf ile, lo ck) ;

end.

Listing 11

That's it! Type Listing 10 in the Pascal
Editor and assemble it and . . . you're
almost there. There's one more item to
consider.- When ·the Pascal, assembler
writes a codefile, it writes a single block
of information which is placed at the
front of the codefile. However, although
the assembler always writes this block,
the information.therein is useful only for
modules, and this block must be re
moved from the front of interpreter files.
The ideal solution to this situation
would be a pseudo-op (called, perhaps,
.MAKElNTERP), which would generate
files without the information block The
current solution, though, is to have a
Pascal program to rewrite the file with
dut the information block

When the Apple 111 SOS Reference
Manual is distributed, Apple plans to
include a program to perform this func
tion. Until then, here is a program,
Listing 11, (without any error checking)
to accomplish the same purpose.

After you've assembled the interpre
ter listed above, enter and compile this
program, then execute it and convert
the codefile. The final product is now a
real, live, almost useful interpreter. What
do you have to do to use it? Just format
a diskette and put SOS.KERNEL and
SOS.DRIVER on it Then copy the con
verted codefile from our interpreter
maker to the new disk and call it (natu
rally enough) SOS.INTERP. If you've
done everything right and the stars are
smiling upon you, you should then be
able to boot the diskette and have it say
"Hi" to you! All right!

You have just created an Assembly
language program which executes all
by itself, without BASIC or Pascal or any
other high level language hanging
around. Although it performs no useful
function other than as a demonstration,
it allows you to view the basic structure
needed to write your own interpreters.

I hope all these goodies about inter
preters and SOS calls will be enough to
keep you going until next time. If not.
please write to me. I can be had at

Alan Anderson
c/ o Apple Orchard

910 A George St
Santa Clara, CA 95050

Next time, I'll probably present some
more tools for programming the bejee
bers out of the Apple // /, probably in
the form of more SOS calls and ways to
exploit all the power in the .CONSOLE
driver. However, this is changable ac
cording to your whims, so let me know
what you want

Okay, everybody . ..

HITTHE SOS! •

September - October 1982 51

